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Problems relating to the analysis of instability and asymptotic stability are considered for non-steady systems of ordinary differential 
equations, solved for the derivative. It is assumed that the right-hand sides of the system converge uniformly as the time increases 
without limit, tending to certain functions of the phase variables. Propositions are proved analogous to those of Lyapunov's second 
method [1-7] for steady systems, but the condition that the derivative of the Lyapunov function be sign-definite is relaxed. Instead, 
the derivative is required to be of constant sign, and a certain algebraic condition, which may always be verified directly, is imposed 
on the Lyapunov function. © 2004 Elsevier Ltd. All rights reserved. 

1. A C O N D I T I O N  T H A T  P O I N T S  O F  m - L I M I T  S E T S  M U S T  S A T I S F Y  

Consider the system 

n , l  + 
:ci = 1)i(t, x ) ,  0 <_ t < ~ ,  x e Beo e R ; l)i(t, x) e C°tj (R{t } x B%) (1.1) 

where B~0 is a certain open sphere in R " with centre at the point x0 = 0 and radius e 0. 
Suppose the functions a)i(t,X ) (i = 1 , . . . ,  n )  in system (1.1) converge as t ---> ~ uniformly in the domain 

/~Eo to the functions v~(x): 
Vi( t ,x)  :Z~ V~(x),  O~(x) e Cm(B%), re>O,  i = 1, 2 . . . . .  n (1.2) 

t - - )  ~ Be 0 

We shall say that such systems belong to class gf. For every system (1.1) of class 0f, in the domain 
(t, x) C R~+t~ x Be0 conditions hold for the existence and uniqueness of solutions and their continuous 
dependence on the time t (this property will be repeatedly needed below) and on the initial data [3]. 

L e m m a  1. Suppose that, for some trajectoryx(t; ~, 2), 0 < ~, 2 E Be0 of a system (1.1) of class 3f, one 
can define a non-empty c0-1imit set n(~, 2) C B~ 0 which is a subset of a level set of a function F(x) E 
CI(B~o). 

Then 

n(~, ~ ) c  {x: ,~ l im~[F]v( t ' x )de=f~) [F] (x )=0}  

Proof. By virtue of the convergence (1.2) and the condition F(x) ~ Cl(Be0), the function 

lim a F ( x ) / a t l ( , ,  x) = 
l --3. ~ 

is well defined in the domain Be0. 
We will show that under the assumptions of Lemma 1 the set n(~, 2) is a subset of the zero level of 

this function. 
Since a limit set is always closed and the sphere Be0 is an open set, it follows that for every number 

e o there is a number go < eo such that 

n(~, ~) c B~o c B~o c B~o 
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A number  M > 0 exists such that  

]ui( t ,x) l<M, V ( t , x ) : t > O ,  x~B~o,  i =  1 . . . .  ; n  (1.3) 

Indeed,  suppose the contrary,  that  is, 

3i*: 3t n > O, =tx n ~ B~:o: tl)i.(tn, xn) I > N, VN (1.4) 

The sequence {x~} in the compact set/3e~ always contains a convergent subsequence, so that we may assume, 
without loss of generality, that {x~} ~ x (°), ~(0) C/3e0" 

There are two possibilities for the sequence {t~}: 
(1) the sequence {t~} is bounded above by a number T > 0: t~ < T, Vn; 
(2) the sequence {t~} contains a subsequence {tin} ~ eo, tk+ 1 > tk- 
In the first case, assumption (1.4) contradicts the fact that the function 1)i.(t, X), being by assumption continuous 

in the compact set {t, x: 0 ~ t ~< T, x E/~e0, is uniformly bounded there. Consequently, assumption (1.4) may only 
hold if the second possibility holds. 

Since x (°) E/~0, it follows from the condition of uniform convergence 1)i,(t , X) ~ D**(X) in the domain Bs~ that 
t - - ~  

Ve 3x(e, x(°)), 5(e, x(°)): 

, (o) < :Jx-x(°)l 8, t>~(~,x (°)) II)i.(t,x)- l~i.(x )l E VX < 
(1.5) 

Fix some e = ~ > 0. 
Assuming that the second possibility holds, we infer from the convergence condition {x~ }~ ~ ~ ~ x (°) that 

3No: Vm > No: I.~m - xC°)[ < fi(~;, xC°)), tm> "1:(~:, X (°)) (1.6) 

where {.l~m} is the subsequence of {x~} corresponding to the subsequence { tin} of {t~}. Reasoning now from condition 
(1.5) with ~ = ~, in view of condition (1.6) and the boundedness in B~0 of the function ~** E C(B~o), we obtain a 
contradiction to assumption (1.4), proving the validity of the estimate (1.3). 

Now suppose L e m m a  1 is false: 

3x* ~ ~(~,2); Ix*l <~:0: ~b~)F(x*) ~e0 (1.7) 

Le t  ~(,1)F(x*) = 2a; without  loss of  generality, we shall assume that  ~x > 0. 
It follows immediately f rom the fact that  system (1.1) is of  class ~ ,  in view of  the continuity of  the 

funct ion F(x) in the domain  B~0, that  the convergence of the funct ion 

a F  /~(t, x) = ~"-l)k(t, x) 
o x  k 

as t ~ ~o to the funct ion ~O)[F(x*)](x) is un i form in the domain  Be0. There fore ,  

3T o = To(X*, a)  > 0, 15o = 80(x*, a) ,  Ix*l + 15o < ~o: 

[F(t ,x)-~)F(x*)l  &a Vx : Ix-x*l <15o, Vt>T0 
(1.8) 

H e n c e  we have 

F(t, x) > a Vx: I x -  x*] < 150, Vt > T O (1.9) 

By assumption,  x* is a limit point  for  the t rajectory x(t; ~, 2), and hence  an increasing sequence  
{t} ~ o~: {x(tn; ~, 2)} ~ x* exists. Thus, for  the numbers  150 and To of  (1.9) we obtain 

3N 1 = Nl(15o, To): Ix* - x(tn; ~, 2)1 < 150/2; t~ > T 0, Vn > N 1 (1.10) 

Le t  us now assume that  for  some number  no > N1 

Ix*-x( tno+t;  ~,2) I < (3 /4 )8  o, V t > 0  (1.11) 
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Then estimate (1.9) is valid along the trajectory x(t; ~, 2) (the trajectory is by assumption defined 
throughout the interval R~}) beginning from the time tn0. We therefore have 

F(x) lx  = x(/.o+t; ~.~) > F(x)l~ = x(t.0+,; ~,~) + at ,  Vt  > 0 

But this, together with the assumption (1.11), as well as the condition Ix*l + < in assumption 
(_1.8), contradicts the boundedness in the compact set/~0 of the function F(x), which is continuous in 
Be0 C B~ o. Hence assumption (1.11) is false. Thus, for all n > N1 a finite value of % > 0 exists such that 
the trajectory x(t; ~, 2), emanating at time t = t, from the point x(t,; ~, 2), first intersects the sphere 
Ix -x*]  = (3/4)fi 0 at the time t, + "c,: 

~"cn < e ~  I X ( t n + " C n ;  t, 2)--X*[ = (3/4)~ 0, V n > N I ;  
(1.12) 

Ix(tn + t; ~, 2) - x* I < (3/4)~50: O < t < "c n 

Next, taking into account that {x: Ix -x*]  ~< (3/4)60} C Be° (see the corresponding condition in (1.8)) 
we deduce by virtue of the estimate (1.3) that for any point x of the sphere Ix - x* I = 60/2 and 
any time t > 0, the time in which a trajectory of system (1.1), emanating at time t from the point x, 
will succeed in reaching the sphere ]x - x * ]  = (3/4)80, is no less than a certain quantity Xo(X*) = 
(1/4)8oM,/ -£n > 0. 

By conditions (1.10) and (1.12), this implies that 

x, >"c o, Vn > N 1 (1.13) 

It now follows from the conditionx* E x(i, 2) C B~o, the continuity of the function F(x) in the domain 
Be0, and the convergence {x(t~; ~, 2)} ,~= ~ x*, that 

3N2: [F(x(tn; ?, 2)) - F(x*)[ < a*0/2, Vn > N 2 (1.14) 

The numbers a and z0 were defined above. 
As a result, from conditions (1.10), (1.2), (1.9), (1.13) and (1.14), we obtain 

t n + "C n 

F(x( tn  +'~n; "t, 2))  = F(x(tn; ~,2))+ I /'(X,x('C; ~,2))d'c> 
,. (1.15) 

> F(x(t~; ~, 2))  + {X~ o > F(x* )  + {~'%/2, Vn > N o = max{Np N2} 

On the other hand, since the sequence {t.} --4 ~ ,  while for any n > No the number "c~ > % > 0 is 
finite, we can extract from the sequence {tn + "cn} a monotonically increasing subsequence that tends 
to infinity: 

3n(m): N --) N: tm = tn{m) + 'i;n(rn)" tk+ 1 > tk; {tin} "-) e~ 

In turn, all the pointsx(t ,(m) + %(m); ?, 2) = X(tm; ?, k) lie, by construction, on the sphere Ix -x*[  = 
(3/4)~50, and therefore we can extract from the sequence X(tm; t, k) a subsequence {x(ts; t, k)} which 
converges to some point x**: Ix* -x** [ = (3/4)/50. Now, for every s, {x(ts; t, 2)} is a point of the trajectory 
{x(t; L 2)}, and the sequence {~} --* ~ ,  as a subsequence of {tm}, tends to +~,; hence 

x** ~ x(~, ~) 

By the assumptions of Lemma 1, we may therefore conclude that 

F(x*)  = F(x**)  (1.16) 

At the same time, by virtue of the continuity of the function F in the domain Be0, the condition ]x* ] + 
8o < ~0 in (1.8), the first condition (1.12) and the estimate (1.15), we conclude that the following estimate 
holds at the point x**, as a partial limit of the sequence {x(t  n + "On; t, 2)} 

F(x**)  > F(x* )  + COCo/2, ~"c0/2 > 0 

But this contradicts equality (1.16). 
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Thus, assumption (1.7) is false, and this proves Lemma 1. 
Suppose now that, under the assumptions of Lemma 1, F(x) is a function of class C 2 in the domain 

B~o. Then, if m/>  1, we have ~ (.1) [F] (x) E CI(B~o). Thus, Lemma 1 may be applied in this case twice in 
succession: first to the function F(x) and then to the function ~(.l)[F](x). 

In the case of a system (1.1) of class ~ and a function F(x) ~ C m + l(Beo), Lemma 1 may obviously 
be applied successively m + 1 times. This follows immediately from the formulation of Lemma 1 and 
the fact that, in that case, the condition 

dP(X) ~ CP(Beo ),  Vp  : 2 <_ p < m + 1 

implies 

~ ) ~ ) [ ( I ) ] ( X )  E C p -  ~ ( Beo) 

Thus, the following proposition holds. 

Corollary 1. Suppose that, under the assumptions of Lemma 1, F(x) is a function of class C m + l(B~o ). 
Then 

x(?, .~) c {x : ~(,1)[Fl(x) = 0, ~(,Z)[Fl(x) = 0 . . . . .  ~(,m+ I)[FI(x) = 0} 

where 

+ "[F](x) = 

the function ~ (.1) [F] (x) being defined as in the statement of Lemma 1. 
We now note that any dynamical system 2 = o)(x), x E R" with autonomous field of velocities of class 

Cm(B~o) is necessarily a system of class ~C. Therefore, obviously, all of the previous exposition 
automatically carries over to the autonomous case. Corollary 1 of Lemma 1 becomes 

Corollary 2. Suppose that, for some trajectorygt(k) of an autonomous system (1.1) defined by a field 
of class Cm(B~o), an (o-limit set x(2) exists, all of whose points lie in the open sphere BE0 and to a level 
set of a function F(x) E C m + a(B~o). Then 

/t(.~) C {x: ~ k F ( x )  = O, k = 1 . . . . .  m + 1 } 

where ~PF(x) is thepth Lie derivative ofF(x) along trajectories of the system (1.1) under consideration. 
This elementary fact may obviously be proved without the use of Lemma 1. 

L e m m a  2. Let J be an invariant set of system (1.1) such that ] ~ R~-t) × B~ 0 is a subset of a level set 
+ I  + of a function F(t, x) E C m (R{t} × BE0). Then the set J is a subset of the common zero level set of the 

k functions ~ F ( t ,  x) (k = 1, ... , m + 1), J E {(t, x): ~ F(t, x) = 0, k = 1, 2, ... , m + 1}, where 
~PF(t,  x) is the totalpth derivative of the function F(t, x) along trajectories of Eqs (1.1). 

+ 
Proof. By the cond i t i on ]  ~ R(t } x BE0 , we have 

+ + ~ + 
3~;0 < £0: "] C (R{t } X B~o ) c (R{t } × Beo) c (R{t } × B~0) 

By the conditions 

O)i~ C'~n(R{t} x Beo ) , +  F ( t , x ) ~  C m+l(Ri t  }+ x Beo) 

all the functions ~PF(t ,  x)  (p = 1 . . . . .  rn + 1) are well defined in the domain R~} × Be0. We will show that the set 
] is a subset of their c o m m o n  zero level. 

Let  (~, :~) be an arbitrary point of the set J. Consider a trajectory x(t; ?, Yc) of system (1.17) and a sequence 
{tk}k ~ ~ --'> t: Vk? < t k + 1 < tk. 

By assumption, the point (t, x(t; ?, 2)), Vt > ~ belongs to J, and therefore 

F(tk,  x(tk; ~, 3c)) = F(~, .~), V k = 1, 2 . . . .  

Hence,  noting that 
t k 

F( t  k, x( tk;  ~, ~))  = F(~, Y¢) + fl#('C, x('~; ~, .~))d'c 
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and that, as a consequence of the condition ] C (R(~t x B~0), the whole semi-trajectory (z, x(% 2, 2)), x i> ~ lies in 
the continuity domain of the function/~(t, x), we obtain 

~t~x) : t<t~ l~<tk:F( t , x ) l t=  ,~. _ m. = 0 
(r k . x -  x(~ k . ~,~)) 

Next, for functions ~)i(t, X) continuous in the domain R~ti x B~0 , we conclude that they are bounded in the compact 
set {(t, x): ~ ~< t ~< ta, x E B~0}: 

3 M o : l U i ( t , x ) l < M  o, Vt,  ? < t < t  1, VxeB~0, i =  1 ..... n 

Hence, in view of the conditions 

(1) (t~l), O) ~ -+ t < t  k < t k < t  I and x( t  k ; , 2 ) ) ~  J e  B~0xR{ 

we obtain 

I k -  x(  t~l) ; ?,2) I < 4~Mo(  t (') _ ?) 

This last inequality, together with the conditions ~ < t (1) < t k and {t k} --4 2, implies that {t(m 1)} --+ ~ and x(t(ml); (k) 
~, 2) --~ 2. Therefore, taking into account the form of the function F at the point (2, 2) ~/~0, we obtain 

(/r(?,~)=O):=~F(t,x) = O, V( t ,x )  e . l  

In exactly the same way (repeating the previous reasoning verbatim except for the substitution F(t, x)  ~ [~(t, x)) ,  
we conclude that ~(2)F(t, x) = O, V(t, x)  ~ ],  and so on, all in all m + 1 times. This proves the lemma. 

The assumptions of Lemma 2 may obviously be weakened, but that is not essential here. 
In the autonomous case, any c0-1imit set is automatically invariant. In that case Lemma 2 immediately 

implies the proposition stated in Corollary 2. 
In the non-autonomous case, unlike the autonomous case, a limit set need no longer be invariant. 

In that case, therefore, Lemma 2 does not imply any propositions regarding the limit set. 
This is also true in the case of a system (1.1) of class ~£: There is no implicative relation between 

Lemmas 1 and 2. However, the case of systems of class ~ differs from the general case in that here, 
nevertheless, it proves possible, as shown above, to achieve an analytical formulation of the equations 
that must be satisfied by points of the appropriate limit sets. Note that the functions ~(k)[F](x) in Lemma 
1 (and Corollary 1) are simply the kth Lie derivatives of the function F ( x )  along trajectories of the 
autonomous system 2i = v*(x), where the functions v*(x) are the limits as t ~ ~o of the functions 
~i(t, x )  that define the non-autonomous system (1.1) considered in Lemma 1. 

In that connection, the following remark may the made. Let the C~; 1-functions v i ( t  , x )  defining system 
(1.1), which has a unique equilibrium positionx0 = 0, converge as t ~ + ~  uniformly in R n to functions 
that are analytic in R n, say v*(x). If at the same time the system ,tO i = ~)[(X)  does not have invariant sets 
other than x 0 = 0 which are subsets of level sets of an analytic function F(x ) ,  then system (1.l) does 
not have any trajectory whose co-limit set is distinct from x0 = 0 and is a subset of some level set of 
F(x ) .  

Indeed, supposing the contrary, one arrives at a contradiction using Lie's formula and taking Corollary 
1 into consideration. 

We also note that all the propositions of Section 1 remain valid in the case when the limit (or invariant) 
set consists of only one point. 

2. W E A K E N I N G  T H E  C O N D I T I O N  OF T H E  S I G N - D E F I N I T E  
D E R I V A T I V E  IN L Y A P U N O V ' S  F I R S T  I N S T A B I L I T Y  T H E O R E M  AND 

A S Y M P T O T I C  S T A B I L I T Y  T H E O R E M ,  AND IN A N A L O G U E S  OF 
K R A S O V K I I ' S  AND B A R B A S H I N ' S  T H E O R E M S  

Lemma 1 may be used to weaken the stipulation made in certain theorems of Lyapunov's second method 
that the derivative of the function Vmust  be sign-definite. 

Throughout  what follows, the properties of stability, instability, uniform stability and uniform 
asymptotic stability being considered (or used) will be understood in the usual sense, that is, in 
accordance with Lyapunov's definitions [1]. Let  us recall them briefly. 

The zero equilibrium positionx0 = 0 of system (1.1) is said to be stable if, for every arbitrarily small 
number e > 0 and every time to/> O, a number 8 = 6(~, to) exists, such that, if ]Xo] < 6(e, to), then 
[x(t; to, 2o)[ < ~, Vt/> to. If the number 6 is independent of the time to, depending only on the value 
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of e: 8 = 8(~), the zero equilibrium of system (1.1) is said to be uniformly stable, and in the case when, 
in addition, some neighbourhood of zero ~ C R ~ exists, such that 

tlim+ x(t;to, X °) --->0,~'x(°)~ ~ ,  Vto>0 

the solution x0 = 0 is said to be uniformly asymptotically stable. 
In turn, if x0 = 0 is the zero equilibrium position of system (1.1) and a pair of numbers ~ > 0, 

to ~> 0 exists, such that for every 8 > 0 a point x(°): Ix(°) I < 8 and a number t > to exist, such that 
Ix(t, to, x (°)) I > e, then the equilibrium x0 = 0 is unstable. 

2.1. Weakening the sign-definiteness condition imposed on the derivative in Lyapunov's first instability 
theorem 
Proposition 1. Let x0 = 0 be an equilibrium position of system (1.1), and assume that the right-hand 
sides of the equations satisfy the conditions 

0, I + l)i(t, x) e Ctx (R{t } x Beo), 1)i(t, x) ~ V*(x), 1)*(x) e c'n(B%), m > 0 
t -~  + ~  B~o 

Suppose for system (1.1) that a number to > 0 and a number V(t,x) exist: 

1,1 + 
V(t,x) e Ctx (R{t }xB~o), V(t,O) = O, Vt 

V(t, x) =3; V*(x), V*(x) ~ C m+l(Beo ) 
t --> - ~  B~ 0 

such that 

(1) ¢(t ,x)>O, Vt>_to, X~ B%; 

(2) V8 3x(~), Ix¢8)1 < & V(t o, x(5)) > 0 

(3) for any c > 0, the algebraic system 

{V*(x)  = c, Q~)[V*](x)  = 0, p = 1,2 . . . . .  m+  1} 

where 
~ ( k + l ) [ . ]  O) k 

, = ~ ,  [~ . [ ' 1 ]  

has no solutions in some neighbourhood of zero in R ". 
Then the equilibrium x0 = 0 is unstable. 

(2.1) 

Proof. We shall assume without loss of generality that for no c > 0 does system (2.1) have solutions 
in the domain B~0. 

Suppose the equilibriumx0 = 0 is stable. Then, first, 8 > 0 exists, such that each trajectoryx(t; to, 2), 
2 ~ B~(0) is defined over the entire time axis R{]I, and, second 

veqs(e,  to) < ~ Ix(t; to, < Vt  to, (2.2) 

Now fix some number g > 0, 8 < 8(%/2, to), (8(e0/2, to) < 8). Let x(8) be the point of condition 2 
corresponding to the number 8. 

Then the trajectoryx(t; to, x(8)) of system (1.1) may be continued to the entire time axis R~t} and 

x(t; to, x(g)) e Bed > Vt > t o (2.3) 

Consequently, one can define for that trajectory a non-empty limit set 

~(to; x(~)) ;~ O, n(to; x(~)) c B~o/2 c Beo (2.4) 

There are two possibilities: the set (2.4) consists of a single point x = xl (Case 1) or of more than 
one point (Case 2). 
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Consider Case 2. Let 

We have 

Now suppose that 

x 1 E n(t0; x(8)), x 2 ~ n(t0; x(8)), x I :;/: x 2 

3{t~/)}k__.~ ~o ' (l) {x(t  k ; t o, x(8))}k_.--~ooXt; l = 1, 2 (2.5) 

V*(Xl) ~ V*(x2), V*(xl) > V*(xz) (2.6) 

The uniform convergence condition V(t, x) ~ V*(x) in the domain B~0 , and the condition 
t - ->~ 

X 1 (~ J~(t0; X(8)) • BE0, X 2 e n(t0; X(8 )) C B~0 

imply, in view of the convergence (2.5), that 

x(t k ; t o, x(8)) }k2V*(xt) ,  l = 1, 2 (2.7) 

It follows from condition 1, in view of condition (2.3), that from a time t = t o on, V(t, x) is a non- 
decreasing function along the trajectory x(t; to, x(~): 

V(X2, x("¢2; to, X(8)))>- V('I;1, x ( ~  1, to, X(8)))>- V(to, X(8 Q, V'l;2, 171 ' 172 --> I71 >--t 0 (2.8) 

At the same time, one can always extract from the sequences {t q)} ~ oo subsequences {i~ )} ~ o~ 
(l = 1, 2) such that 

re z(1) ~(2) -(I) 
t o<tp < <tp+l, Vp = 1,2 . . . .  (2.9) 

Hence, on the basis of inequality (2.8), we have 

x07>; ,o,x(,>>>>- x0';>; ,0, x(8>>), vp = 1,2 . . . .  (2.1o) 

Taking the convergences (2.7) into consideration, we obtain 

V(~(p°); x(tp , to, X(~)) --) V*(xt), l = 1, 2 (2.11) 

Thus, conditions (2.10) and (2.11) imply the inequality V*(x2) ~> V*(Xl), contrary to assumption (2.6). 
Similar reasoning clearly leads to a contradiction from the assumption that V*(Xl) > V*(x2). 

As a result, we obtain 

V*(xl) = V*(x2), Vx 1 e n(to, X(8)), "7'X2G x(t0, x(8)) (2.12) 

Now it is also true, by inequality (2.8), that 

def ~ t  > t o V(t; x(t; t o, x(8))) _> V(t o, x(8 )) = C(,o,~,~> ), 

where by condition 2 the number C(to, X(~>) is positive. Therefore, as a consequence of the convergences 
(2.5) and (2.7), we obtain 

V*(x 1) = V*(x 2) = C(to, Xc,~)>-C(to,~,))>O, Vxl e n(to, X(8 Q, Vx2a n(to, X(~ Q (2.13) 

Turning now to Case 1, we see that condition (2.12) is always satisfied (automatically), and taking 
inequality (2.8), condition 2, and the convergence 

V(tk; x(tk; to, x(8)))k~ V*(Xl) 

into consideration, we obtain 
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C* > 0 V*(xl )  = (t0,x~s~)- C(to, x~) > 

Thus,  condit ion (2.13), or  the inclusion relation 

g(tk, X(g)) C {X: V*(x)  = C* > O} (to, x(8 )) 

is satisfied for the set (2.4), irrespective of  which of  cases 1 or  2 holds. But  then the trajectory 
x(t; to, x(g)) and its m-limit set (2.13) satisfy all the assumptions of  Corol lary 1 of  L e m m a  1 for ~ = to, 

= x(g), F(x) = V*(x). Consequently,  all the points of  the set n(t0, x(8)) satisfy the algebraic system (2.1) 
with C = C~t0 xr~) > 0. However ,  ~(t0, x(g)) C Be0 and re(t0, x(g)) ~ ~ ,  and therefore,  by condi t ion 3, such 
a set cannot  satisfy that  system of  equations.  Thus  assumption (2.2) is false, and the equilibrium x0 is 
unstable, which it was required to prove. 

Proposit ion 1 corresponds to Lyapunov 's  first instability theorem. In  a sense it is a certain supplement  
to that  t heorem in the case of  systems (1.1) of  class 7L 

However ,  Lyapunov 's  theorem is universal in nature  and is applicable in the general  case of  arbitrary 
systems (1.1). This is of  course no longer true for Proposi t ion 1, in the sense that  in the general  case 
of  arbitrary systems one cannot  formulate  an analogue of  Proposi t ion 1. 

Examples. 1. Consider the system 

Xl = Xl + 2x3 + f l (x , t )  

x2 = x2 - 2Xl + f2( x, t) 

.% = - 2x 1 + 4x 2 - 4x 3 + f3(x, t) 

where the functionsf/(x, t) (i = 1, 2, 3) are uniformly convergent as t ~ + ~  in some neighbourhood of the point 
x = 0 to functionsf*(x) ~ ca(0), and let V = (x 2 + x 2 -~ ) /2 .  

We have 

rd = (x I + 2x 3 - x2) 2 + x l f  I + x2f  2 -  x3f 3 

If 

Xlfl +x2f2-x3f3 = (Xl +2X3-X2)2g(x,t), g(O,t) = O, g(x , t )~ C(R{t IxO ) 

then 12 1> 0. Condition 3 of Proposition 1 is also satisfied in this case, since the Jacobian of the transformation x 
v*(x) is defined in the relevant neighbourhood of the point x = 0 and does not vanish. Hence the equilibrium 

x0 = 0 is unstable. 
2. Consider the following system, which may be categorized as a "critical" case 

£C 1 = - X l + x 3 + f l ( x ,  t )  

X2 = - 2X2 + (Xl - X2)2f2( x, t) 

where 

J~3 = 2x2 + (xl - X2) 2 

f i (O, t )  = O, f i (x ,  t) ~ f * ( x ) ,  f * ( x )  e C1(0),  i = 1,2 

f l (x ,  t) = o(x2), f2(x, t) ~ C(R{t } x o) 

Letting V = x2 + x3, we have 12 = (Xa - x2)2[1 + f2(x, t)], and therefore, in some neighbourhood of the 
point Xo = 0, we have 12 >I 0. Condition 3 is also satisfied here, so that, by Proposition 1, the equilibrium xo = 0 

is unstable. 
Note that the differentiability of the functions if(x), as well as the uniform continuity at x = 0 of the 

functions g(x, t) and f2(x, t) in the first and second o f  the above examples, respectively, are essential 
conditions. 
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We will now consider a few special cases. 

The autonomous case. In the autonomous case Proposition 1 takes the following form. 

Proposition la. Let x0 = 0 be an equilibrium position of the system 

5: = coi(x), i = 1,2 . . . . .  n; col(X) ~ COn(BE0 ) (2.14) 

where B~0 C R ~ is an open sphere centred atx0 = 0, of radius %. Suppose system (2.14) is such that a 
function V(x) ~ C m + l(B~0), m ~> 0, V(0) = 0 exists for which 

(1) V(x) >1 o, Vx B 0; 
(2) V63x(s), ]x(5) l < 6: V(x(6)) > 0; 
(3) for any c > 0, the algebraic system 

{ V(x) = c, ~(e)(V)(x) = 0, p = 1, 2 . . . . .  m + 1 } (2.15) 

where ~k(V)(x) is the kth Lie derivative of the function V along trajectories of system (2.14), has no 
solutions in some neighbourhood of zero in R ~. 

Then the equilibrium x0 = 0 is unstable. 
Proposition la, as a formal corollary of Proposition 1, may naturally be proved directly as well, without 

reference to Proposition 1, just as Corollary 2 of Lemma 1 may be proved directly, without using the 
lemma (see Section 1). 

Indeed, the stability assumption implies the existence of co-limit sets ~(x(8)) ~ ®, ~z(x(s)) c B~0, 
(where x(6) are the points in condition 2) which, by condition 1, are subsets of certain level sets 
{V(x) = c > 0} of the function V. But then Corollary 2 of Lemma 1 (see Section 1) yields a contradiction 
to condition 3. 

The problem of weakening the condition of Lyapunov's first instability theorem and asymptotic stability 
theorem that the derivative be sign-definite has been studied for the autonomous and periodic cases 
by Krasovskii [5]. Proposition la  is a corollary of an analogue of Krasovskii's instability theorem [5, 7], 
and Lemma 2 is thus a certain extension of Krasovskii's theorem. 

We also mention that Proposition la  differs from the formulation of Lyapunov's first instability 
theorem for the autonomous case in that the condition 

I;'(x) > 0, Vx ~ B~o (2.16) 

of Lyapunov's theorem is replaced by the combination of condition (2.16) and the condition that the 
algebraic system (2.15) should have no solutions in the domain B~0 for any c > 0. This latter condition, 
however, may always be verified directly in each specific case (based on an analysis of the given functions 
coi(x) and the function V) in an explicit analytical form. Moreover, ifm 1> n - 1, it holds almost everywhere. 

The degenerate case. Let us consider the degenerate case, in which the function V*(x) occurring in 
the assumptions of Proposition 1 vanishes identically. Then condition 3 is automatically satisfied, the 
convergence condition vi(t, x) t ~ =  v*(x) as t --+ oo becomes superfluous, and Proposition 1 becomes 
the following statement. 

Suppose a system)c i = l ) i ( t ,  X ) ,  ( i  --  1, . . .  , n ) ,  having an equilibrium position x0 -= 0, is such that for 
some Ca-function V(t, x), V(t, 0) = O, and some number t o > 0, the following conditions are satisfied: 

(1) V/> 0, Vt ~> to, Vx E B~0; 
(2) V63x(s), Ix(s)[ < 6: V(to, X(s)) > 0, where the C-function V(t,x) converges to zero as t ---) oo uniformly 

in the domain B~0. 
Then the equilibrium x0 = 0 is unstable. 
This proposition is analogous to a previous theorem of Persidskii [4]. 

2.2. Weakening of  the sign-definiteness condition in Lyapunov's asymptotic stability theorem and in the 
supplement to Krasovsldi' s theorem 
Suppose for some system (1.1) of class ~ a function V(t, x) exists which satisfies all the conditions of 
Proposition 1. In that case each of the trajectoriesx(t; to, x(6)), 8 < e0/2, where x(6) is the point in condition 
2 of Proposition 1, will at some time t(5) > to intersect the sphere ]x l = e0/2 (see above). 

If that is the case for any point x ~ 0 of the domain B~o/2 and any to, and if the solutions of system 
(1.1) are continuable to the entire negative time axis, then, one the basis of the proof of Proposition 1, 
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we may conclude that the motion in system (1.1) is then the reverse of the motion in a system with an 
uniformly asymptotically stable equilibrium position x0 = 0. (This case is naturally a special instance 
of the general case of motion with unstable x0, regarding which Proposition 1 was formulated.) 

In other words, if the function V(t,x) in Proposition i is positive-definite, then, making the replacement 
>i 0 --> ~< 0 in condition 1, we obtain 

Proposition 2. Let system (1.1) be a system of class ~£ for which a number to > 0 and a C~ Lfunction 
V(t, x): (R{t? x B~0) ~ R; V(t, 0) = 0, Vt exist, which converges as t --+ 0, uniformly in the domain B~0, 
to a function V*(x) ~ C m +~(B~0 ) and moreover satisfies the following conditions: 

(1) V(t, x) <- 0 Vt >1 to, Vx ~ Be0; 
(2) V(t, x) >i W(x) > 0 Vt >1 0, Vx E B~o, x ¢ Xo = 0, W(xo) = 0 
(3) for any c > 0, there is a neighbourhood ofxo = 0 in R" in which the algebraic system (2.1) has 

no solutions. 
Then the equilibrium x0 = 0 is uniformly asymptotically stable. 

Proof. The method of proof is the same as that used to prove Proposition 1. 
As in the proof of Proposition 1, we may assume without loss of generality that the domain occurring 

in condition 3 contains Ba0. 
By the condition that the function V(t, x) converge uniformly as t ~ +oo in the domain BE0, we have 

Ve3T(e), ~l(e) Vx: Ixl < ~l(e), Vt > T(e) 

V(t, x ) -  tlirn V(t, 0) = W(t, x)l < e (2.17) 

By the continuity of the function V(t, x) in the domain 0 ~< t, x E B~ 0, thanks to which this function 
is continuous inx, uniformly in t for 0 <~ t ~ T(e) is the number in condition (2.17), we have 

3~2(e) = 82(T(e), e) : Vx : Ixl < ~2(e) Vt : 0 < t < T(e) 
(2.18) 

IV(t, x) - V(t, 0)l = IV(t, x)l < e  

Conditions (2.17) and (2.18) imply 

k]£ 38 (e )  = min(~il(e) ,  82(8))  : Vx : [xl < ~(E) =~ IV(t, x)t < e, Vt >_ 0 

Thus, if the conditions of Proposition 2 are satisfied, the function V(t, x) tends to an infinitesimal upper 
limit. But then, in view of conditions 1 and 2, it follows at once from Lyapunov's stability theorem that 
the equilibrium x0 = 0 is uniformly stable. In other words, a number 1"1 exists such that the trajectory 
x(t; 7, 2) V2 E B~ is continuable to the entire time axis R~-t} and 

vE3n(e)<fi, V e0 vt_>7 (2.19) 

We shall now show that any trajectory of system (1.1) emanating at some instant of time from a point 
of the sphere 

Bn(%/2) = {x: [xl <rl(e0/2)} 

will tend to the point x0 = 0 as t ~ +oo (here rl(e) is the function defined in (2.19) and e0 > 0 is the 
number occurring in the assumptions of Proposition 2). 

Suppose the contrary: a point 2 and a time ~ >1 0 exist such that 

1 2 1 < n ( e 0 / 2 ) : 3 8 : w > 7  3t(k)>k:lx(ttk); 7,2) I > 8  (2.20) 

Conditions (2.19) and (2.20) taken together give 

%/2 > [x(t(k); ~, 2)1 > ~ Vk > ? (2.21) 

Therefore, the sequence of points x(tg; 7, 2), tk > k > ~ has a partial limit xl: 

.O) 
3k(m) : N---> N : b. = tk(m), m = 1 . . . .  ; (k(s) > } Vs) 

x(t2); ~, 2),__.>xl ' eo/2 > Ixll > g (2.22) 
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Since the sequence {tO )} satisfies the condition {t(m 1)} m---)+ ~ ~o, as a subsequence of the sequence 

{tk}k~+= ~o, and since each of the pointsx(t~); ~, ~) lies on the semi-trajectoryx(t; ~, k), t > ?, condition 

(2.20) means that one can define for the trajectory x(t; ~, ~) a non-empty m-limit set 

~ ( t ,  .~) CX .Beo/2 (Z B~o, X 1 ~ n(?, ~) (2.23) 

as follows from condition (2.19) in view of the condition 121 < q(%/2) in (2.20). 
There are two possible cases: the set (2.23) consists of a single point Xl (Case 1) or of more than one 

point (Case 2). 
Consider Case 2. 
Le tx  = X 2 be any point of the set n(~, 2) distinct fromx> 
We have 

:t{t~ )} -+ ~:  {x(t~); ~,~)} ~ x 2 (2.24) 
m - - + ~  m ---) ~ 

Then, reasoning from the convergences (2.20), (2.24), the uniform convergence V(t, x) t~= V*(x) in 

the domain B~0, the inclusion relation =(~, 2) C/)~0/2 (2.21), and also from condition l in view of the 

condition Vt > ~x(t; ~, 2) ~ B~o/2, we deduce as in the proof of Proposition 1 that 

V*(x2) = V*(Xl) (2.25) 

If Case 1 holds, this equality is automatically true. Hence Eq. (2.25) will always hold, irrespective of 
which of cases 1 or 2 takes place. 

It now follows from the fact that the function W(x) is positive-definite in the domain/)~0/2, in view of 
the condition e0/2 > 8, that 

3~ > 0:col2 > Jxl > ~ ~ W(x) > 

where 8 > 0 is the number from (2.20). 
Hence, in view of the right-hand inequality of (2.21) and by condition 2, 

V(t(,nl); x(t(m]); ~, ~)) > - (,) W(xft m ; ~, ~)) > e (2.26) 

From the condition V(t,t_,=x) ~ V*(x), taking account of the conditions (2.22) and {t~ )} m-~= + ~ '  we infer 

{v(t~l); ~1) x( t  m ; x,t))}m"~ V*(x1) 

wherexa is the point from condition (2.22). But then, by virtue of inequality (2.26), it is necessarily true 
that 

V*(xl) = c* _>e>0 (2.27) 

As a result, we deduce, on the basis of Eq. (2.25) and the inclusion relation (2.23), that for the trajectory 
x(t; ~, 2), where (~, 2) are the initial data from condition (2.20), and its m-limit set (2.23), all the conditions 
of Corollary 1 to Lemma 1 are satisfied. Consequently, all the points of the set (2.23) satisfy algebraic 
system (2.1) with a number c = c(* L ~) which is positive by condition (2.27). 

But this contradicts condition 3, that is, assumption (2.20) is false. Therefore, 

x(t;?,~) ~ x o = 0V~,l~l<71(e0/2), V?>0 

which, together with condition (2.19), completes the proof of Proposition 2. 
In the special case of an autonomous system, Proposition 2 becomes the corollary obtained from 

Proposition la  if condition 1 in the latter is replaced by the condition 12(x) <~ O, Vx E B~o, condition 2 
by the condition V > 0, Vx ~ B~ o, x ~ O, and the conclusion of instability by the conclusion that the 
system is asymptotically stable. 
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The corollary thus obtained from Proposition 2 for the autonomous case corresponds to 
Krasovskii's asymptotic stability theorem [5, 7]. 

Examples. 1. For the system 

Xl = Xl -2X3  + f l ( x )  

"~2 = X2 + 2Xl + f 2 ( x )  

J?3 = X3 - 2X2 + f3 (x )  

f i ( x )  E C I ( R  3) 

and the function V = (x~ + x~ + x~)/2, we have 

= (X I + X 2 - X3) 2 + x l f  1 + x 2 f  2 + x 3 f  3 

If 

x l f  I + x 2 f  2 + x 3 f  3 = (x 1 + x 2 -  x3)2g(x), g(x)  E C ( R  3) 

g(O) = 0 

then this system necessarily satisfies all the assumptions of Proposition la, and the inverse system satisfies all the 
assumptions of Proposition 2. 

2. We will also consider the system describing a Van der Pol pendulum 

Xl = X2, "r2 = - X l + [ ' t X 2 ( 1 - X l )  2, ~ t > 0  

For the function V = .(x ] + x~)/2 we have I2 = ~tx2(1 - x~), and therefore, in some neighbourhood of the zero 
equilibrium position, V ~ 0. 

System (2.15) can have solutions only at points with x2 = 0, but in that case the equation 

 lx _-0 -- = 0 

will have (in a sufficiently small neighbourhood of x0 = 0) a unique solutionxl= 0. Hencex0 = 0 is the only solution 
of system (2.15), and the equilibrium x0 is unstable. 

For the inverse system 

xi = -x2, x2 = x l -~ tx2 (1 -x l )  2 

and the function V = (x~ + x2)/2, as in the previous example, all the assumptions of Proposition 2 hold, and the 
zero equilibrium position is asymptotically stable. 

2.3. Concerning a supplement to Barbashin's theorem 
We will now consider yet another special case in which all the assumptions of Proposition 2 for the 
functions %)i(t,x) and some function V(t,x) hold throughout the entire space R", while the function W(x) 
condition 2 satisfies the condition W(x) --+ +oo as Ix l ~ 8. 

The following remark, which extends a well-known result of Barbashin [7], holds. 
Let  x0 = 0 be an equilibrium position of system (1.1), where the right-hand sides of the latter are 

functions of class C~ 1 (R~t) x R"), and let the functions a3i(t , X) (i = 1, ... , n) converge as t ~ + 
uniformly in R" to the functions v*(x) e Cm(Rn). Suppose moreover that a function V(t, x) ~ C~ 1 
{RI +) x Rn)} exists which converges at t -~ + ~  uniformly in R" to a function V*(x) ~ cm+l(Rn) and 
satisfies the following conditions: 

(1) ll(t, x)  <~ O, Vt  >~ O, Vx ~ R~; 
(2) V(t, x) ~ W(x) > O, Vt, Vx E R n, x :~ x0; W(xo) = 0; W(x) ~ + ~;  
(3) the algebraic system (2.1) has no solutions in R" for any c > 0. 
Then the equilibrium x0 = 0 is asymptotically stable in the large [5, 7]. 
We recall the zero equilibrium position x0 = 0 of system (1.1), is said to be asymptotically stable in 

the large if it is asymptotically stable and the solution x(t; to, x (°)) with any initial data (to, x (°)) in the 
phase space R{t) x R n of system (1.1) tends to the equilibrium x0 = 0 as t ~ +oo. 

Indeed, take any point of (t, x)-space, x(~, k), 2 ¢ x0. By the last part of condition 2 

B~t = ~ ( v ( L  ~)): W(x)  > v (L  yc), Vx  Ix[ >_ ~t(v(7, ~)) 
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Hence, in view of condition 1 and the first part of condition 2, 

[x(t; t , .~)[  <~¢~ , (V( t , . ~ ) ) ,  ~ ' t _ > t  

Thus, every semi-trajectory x(t; ~, 2) of system (1.1) will remain within some sphere B~(v(7 ~ and 
therefore has a non-empty m-limit set rc(i, 2). Reasoning now exactly as in the proof of Propd;it]on 2 
(from the assumption (2.20) until the end), one obtains the desired conclusion. 

For example, for the system inverse to that presented above in Example 1, the equilibrium x0 = 0 is 
asymptotically stable in the large if 

X l f l + x 2 f 2 + x 3 f 3  = (Xl+X2-X3)2g(x); g>--O, VX6 R n 

g ( 0 )  = o 

3. W E A K E N I N G  T H E  S I G N - D E F I N I T E N E S S  C O N D I T I O N  F O R  T H E  
D E R I V A T I V E  IN T H E O R E M S  A N A L O G O U S  TO C H E T A Y E V ' S  AND 

P E R S I D S K I I ' S  T H E O R E M S  

We note that Lemma 1 may used to weaken the condition that the derivative 1) be sign-definite for 
system class gf, not only in the theorems of Lyapunov's second method in which this condition is required 
to hold for all points in some neighbourhood of x0 = 0, but also for those where this condition must 
hold in some domain to, x0 e ~, which is not a complete neighbourhood of zero. 

3.1. A supplement of  Chetayev's theorem 
Proposition 3.1. Suppose that, for some system (1.1) of class 3£, number t o > 0 and a C-I-function 

V(t, x): R~t x B~0 ~ R, V(t, 0) = 0, Vt, which converges as t ~ +oo uniformly in the domain B~0 to a 
, m + l  function V (x) e C (B~o), exist such that . 

(1) Vt >/to, VJ? e B~o, } e {x:V(i, x) > 0} ~ V(t, ~) ~> 0; 
(2) V~3x(~), Ix(8)l < ~; V(to, x0)) > 0; 
(3) for any c > 0, there is a nelghbourhood of zero in R ~ in which the algebraic system (2.1) has no 

solutions. 
Then the equilibrium x0 = 0 is unstable. 

Proof. Suppose the equilibrium x0 = 0 is stable. Then, on the basis of the conditions of Proposition 
3.1, it is obvious that all the arguments in the proof of Proposition 1, from the very beginning up until 
formula (2.7) inclusive, remain valid in this case also. 

We shall now show that here, just as under the assumptions of Chetayev's theorem, the function 
V(t, x), defined in the proof of Proposition 1 along the semi-trajectory x(t; to, x(~)), t >i to, is a non- 
decreasing function. 

We have 

t 

V(t; x(t; t o, x(~))) = V(t o, x(~)) + fg('c; x(x; t o, x(~))dx, Vt >_ t o (3.1) 

to 

If follows from condition. 2 with t = to that V(t0, x(8)) > O. Let us assume now that this condition fails 
to hold at some point of the semi-trajectoryx(t; to, x(g)): 

3t > to: V( t; x( t; to, x (g)) ) < 0 (3.2) 

But the function V(t, x) is continuous is the domain R~t~ x B~0 and, since by condition (2.3) the whole 
semi-trajectory (t, x(t; to, x(~))), t ~ to lies within that domain, the function V(t, x) is continuous on the 
curvex(t; to, x(~)), t ~ to, in R n. Hence, in view of the condition V(t0, x(~)) > 0 and our assumption (3.2), 
it follows that 

qt (°) > to: V(t(°); x(t(°); t o, x(g))) = O, V(t; x(t; t o, x(g))) > O, Vt : t o < t < t (°) (3.3) 
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On the basis of relation (3.1), condition 2 and the first relation of (3.3), we conclude that the segment 
of the trajectory (t, x(t; to, x(g))) and to ~< t <~ t (°) contains a point ([, x({; to, x(~))), to < { < t (°) at which 
the function V(t, x) takes a negative values: 

3? : t o < t < t (°) : 15'(7; x(t;  t 0, x(g))) < 0 (3.4) 

But by the second part of condition (3.3) we have 

V(?; x(t;  to, x(8))) > 0 (3.5) 

But then, on the basis of (2.3), (3.4) and (3.5), we arrive at a proposition contrary to condition 1. 
Thus assumption (3.2) must be false. Therefore,  

V(t; x(t;  t o, x(~))) > O, Vt  >_ t o 

whence, in view of the inclusive relation (2.3) and condition 1, it follows that 

> 0, Vt>_ t o V(t, x) I v(~; ~(t; to, x~)) - 

This means that V(t, x) is a non-decreasing function along the semi-trajectory x(t; to, x(8)), t >! to. But 
then, as is really seen on the basis of the assumptions of Proposition 3, the whole proof of Proposition 
1, beginning with formula (2.8) inclusive to the end, can be repeated here verbatim. 

Thus, the stability assumption is false and the equilibrium x0 = 0 is unstable, which it was required 
to prove. 

Remark. In the above proof it was implicitly assumed that, for every value of t = ~ >~ to, 

{x: VU, x) > 0, Ixl < %} ~ O 

But this condition was not stipulated in the statement of Proposition 3.1. The fact is, however, that it is not 
necessary. Indeed, otherwise, as follows from obvious arguments similar to those used in the proof of Proposition 
3.1, it would follow from the assumptions that the trajectory x(t; to, x(g)) cannot be continued for every ~ < 8(e0/2, 
to) to the entire time axis R~t. But this means that the equilibrium x0 = 0 is unstable. 

Proposition 3.1 is a certain extension of Chetayev's theorem to systems of class ~ .  

The autonomous case. In the autonomous case Proposition 3 becomes the following 

Proposition 3.1a. Letx0 = 0 be an equilibrium position of the system. Suppose for system (2.14) that 
function V(x) ~ C "~ + l(B~0), m i> 0, V(0) = 0 exists, such that, everywhere in a domain {x: V(x) > O, 
Ix l < ~0} such that the pointx0 is on the boundary of the domain, the function Vis non-negative, while, 
for any c > 0, there is a neighbourhood of zero in which the algebraic system (2.15) has no solutions. 
Then the equilibrium x0 = 0 is unstable. 

The relationship between Proposition 3.1a and Chetayev's theorem for the autonomous case is the 
same as between Proposition 1.1a and Lyapunov's first instability theorem for the autonomous case. 

For example, for every system of the form 

Xi = f i ( x )  ' XE R n, f i (O) = 0 Vi = 1,2 . . . . .  n, fn (X) lx .eo>O,  

f i ( x )  E Cn(R n) Vi = 1 . . . . .  n 

which moreover has the property that the algebraic system {~lfn(X) = ... = ~bnfn(x) = 0} has a unique 
solution x = 0, all the assumptions of Proposition 3.1 hold for the function V = xn, and the zero 
equilibrium positions of all such systems are unstable. 

3.2. A supplement to Persidskii's theorem 
Clearly, Lemma 1 may also be used to weaken the condition that the derivative I?be sign-definite in 
other theorems of the second method. 
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In particular, this may be done for those theorems in which it is assumed that a certain sector co exists 
(where the term "sector" is understood henceforth as a domain in the sense defined by Persidskii [6]). 
For example, we have the following 

Proposition 3.2. Let system (2.14) have an equilibrium positionx0 = 0. 
Suppose for system (2.14) that a sector co [6], x0 ~ ~, exists defined in the domain B~0, and a function 

V(x) ~ C m+ l(B~0), m />  0, V(0) = 0, such that 
(1) 9(x) ~> 0 V x ~  co, x s  Ba0; 
(2) V6~c(~), Ix(~)] < 6, x(~) ~ co: V(x(~)) > 0; 
(3) for any c > 0, the algebraic system (2.15) has no solutions in the domain {x: ]x[ < ao, x e ~} C 

R~}. 
Then the equilibrium x0 = 0 is unstable. 

Proof. Suppose the contrary. Then a number 60 > 0 exists such that 

V x ~  B~o lgt(x)l <Co/2, V t > 0  

where gt(x) is the phase flow of system (2.14) and e0 is the number in the condition of Proposition 3.2. 
Hence, for every point x(5) occurring in condition 2 we have, if 6 < 80, 

gt(x(~)) < e0/2, V t > 0  (3.6) 

Now fix some number 6 = ~ < 60 and consider the trajectorygt(x(g)), t >~ O. By condition (3.6), for 
the trajectory gt(x(~)) the following c0-1imit set exists 

rc(x(~)) ~ ~ ,  ~(x(~)) c Be0/2 (3.7) 

Based on the definition of the sector co [4], we conclude that any trajectory emanating at t = 0 from 
an interior point of the domain 

{x: x ~ co, Ix I < eo) 

may leave the domain only through the boundary Ix I = e0. But by condition (3.6) this is impossible for 
the trajectory gt(x(g)) (see condition 2). We therefore have 

gt(x(g)) e to, Vt > 0 (3.8) 

We now conclude from conditions (3.6) and (3.8), by virtue of condition 1 of our proposition, that 
along the trajectory gt(x(g)), t /> 0, the function V(x) is a non-decreasing function. But then it follows 
from the definition of a limit set, the continuity of the function V(x) in the domain Be0, and condition 
(3.6) that 

VX 1E g(X(~)), X2~ g(X(~)), V(XI) = V(x2), Vt>_O (3.9) 

Therefore, by inclusion (3.7) and Eq. (3.9), all the assumptions of Corollary 2 to Lemma i hold for the 
limit set n(x(g)) of the trajectory gt(x(g)) of system (2.14). Thus, all the points of the set n(x(g)) satisfy 
system (2.15) with some c >i V(x(g)) > 0 and moreover, by condition (3.7) and (3.8), they belong to the 
domain {x: x s ~, Ix[ < e0}. But this contradicts condition 3, so that the assumption is false, and the 
equilibrium position x0 is unstable, which it was required to prove. 

For example, in the system 21 = x2, 22 = -x2 + axe, a > 0, the instability of the equilibrium position 
x0 = 0 follows from Proposition 3.2 with sector co = {x2 > 0} and the function V = xl. 

Proposition 3.2 may also be extended to the non-autonomous case for class g£ of systems (1.1). 
In conclusion, we note that "the sphere B~0" in all the propositions formulated above may naturally 

be replaced by "some neighbourhood to zero in R n'' (this is unimportant). 
The condition ah(t, x) e C~ 1 (R~} x B~o) may also be replaced throughout the text by the condition 

ui(t,x) E C(R~o xBe~); Ui(t,x) ~ Lipx(L), i = 1 . . . . .  n 
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In Propositions 1, 3 and 3.2 the condition V(t, x) ~ C~' 1 (R+ x B~0) may be weakened to V(t, x) 
C(R~tI x B~0), together with the condition that the function I/(t, x) be defined everywhere in the domain 
R{ +} x Beo. 
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